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Hyperplanes of a partial linear space

� A partial linear space is an incidence structure Γ(P , L) of
points P and lines L satisfying the axioms (i) any line is at
least with two points (ii) any pair of distinct points is incident
with at most one line.

� A geometric hyperplane of a partial linear space is a proper
subspace meeting each line (necessarily in a unique point or
the whole line).

� Hyperplanes of a (connected) partial linear space satisfy (and
are usefully built from) the following set theoretical equation
between hyperplanes H, H ′ and H”

H” = H ⊕ H ′ = HΔH ′, for any H and H ′,

where Δ means the symmetric difference (H ∪H ′)\ (H ∩H ′)
and the overline symbol means the complement.

Michel Planat Multi-qudits in Veldkamp space



The Veldkamp space

� Hyperplanes of a (connected) partial linear space satisfy (and
are usefully built from) the following set theoretical equation
between hyperplanes H, H ′ and H”

H” = H ⊕ H ′ = HΔH ′, for any H and H ′,

where Δ means the symmetric difference (H ∪H ′)\ (H ∩H ′)
and the overline symbol means the complement.

� In the Veldkamp space ν(Γ) of a point-line incidence geometry
Γ(P , L) of points P and lines L
(i) a point is a geometric hyperplane and
(ii) a line is the collection H ′H” of all geometric hyperplanes
H of Γ such that H ′ ∩H” = H ′ ∩H = H” ∩H or H = H ′,H”,
where H ′ and H” are distinct points of ν(Γ).
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Projective spaces

� A projective space can be thought of as the set of lines through the
origin of a vector space V . The cases when V = R2 and V = R3 are
the real projective line P1(R) and the real projective plane P2(R).

� P2(R) can be described to be the points on the sphere S2, where
every point P and its antipodal point are not distinguished.
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Finite projective spaces

� A finite projective space is a projective space where P is a finite set of
points, each line contains the same number of points and the order of the
space is defined as one less than this common number. For dimension at
least three, Wedderburn’s theorem implies that the division ring over
which the projective space is defined must be a finite field, GF (q), whose
order (that is, number of elements) is q (a prime power).
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The Veldkamp space of a geometry with three points on every line.

� In the Veldkamp space ν(Γ) of a point-line incidence geometry
Γ(P , L) of points P and lines L
(i) a point is a geometric hyperplane and
(ii) a line is the collection H ′H” of all geometric hyperplanes
H of Γ such that H ′ ∩H” = H ′ ∩H = H” ∩H or H = H ′,H”,
where H ′ and H” are distinct points of ν(Γ).

� Proposition: The Veldkamp space of a geometry
with three points on every line is the finite
projective space PG (n, 2)
(of order 2n · · ·+ 2 + 1 = 2n+1 − 1),
for some n.
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The Desargues configuration and its hyperplanes

� The Desargues configuration 103. There are two types of
hyperplanes of type 1 (1 point and one line: 10 copies) and
type 2 (four lines: 5 copies). The Veldkamp space is
isomorphic to PG (3, 2).
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Near (and generalized) polygons

� A near polygon is a connected partial linear space S , with
the property that given a point x and a line L, there always
exists a unique point on L nearest to x .

� A generalized polygon (or generalized n-gon) is an incidence
structure between a discrete set of points and lines whose
incidence graph has diameter n and girth 2n 1.
The definition implies that a generalized n-gon cannot contain i -gons for
2 ≤ i < n but can contain ordinary n-gons.

A generalized polygon of order (s, t) is such that every line
contains s + 1 points and every point lies on t + 1 lines.
A projective plane of order n is a generalized 3-gon. The generalized 4-gons are
the generalized quadrangles. Generalized 6-gons, 8-gons, etc are hexagons,
octagons, etc.
According to Feit-Higman theorem, finite generalized n-gons with s > 1 and
t > 1 may exist only for n ∈ {2, 3, 4, 6, 8} 2.

1The diameter of a graph is the distance between its furthest points. The
girth is the shortest path from a vertex to itself.

2J. Tits and R. M. Weiss, Moufang polygons, Springer Monographs in
Mathematics (Springer, Berlin, 2002).
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The generalized quadrangle GQ(2, 2) and its hyperplanes

� The generalized quadrangle GQ(2, 1). There are two types of
hyperplanes of type ‘ovoid’ (3 non-collinear points): 9 copies)
and type ‘perp-set’ (two lines: 15 copies). The Veldkamp
space is isomorphic to PG (3, 2).

Michel Planat Multi-qudits in Veldkamp space



The smallest thin generalized quadrangle GQ(2, 1) and its hyperplanes

� The generalized quadrangle GQ(2, 2). There are three types of hyperplanes of
type ‘ovoid’ (5 non-collinear points: 6 copies), type ‘perp-set’ (three lines: 10
copies) and type GQ(2, 1) (6 lines: 10 copies). Veldkamp space is PG(4, 2).
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The smallest thin generalized hexagon GH(2, 1) and its hyperplanes: 1

� The generalized (thin) hexagon GH(2, 1) and one of its singular hyperplanes.
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The smallest thin generalized hexagon GH(2, 1) and its hyperplanes: 2

Class Pts Lns n0 n1 n2 Cps Remark

H1 7 0 7 0 0 24 ovoid
H2a 9 2 3 6 0 56
H2b 9 2 4 4 1 42
H3 11 4 2 6 3 84
H4 13 6 0 8 5 21 singular hyperplane
H5 15 8 0 6 9 28

� Take the collinearity graph of the GH(2, 1) geometry. It has 42 edges and an
automorphism group of structure Z2.PSL(2, 7), of order 336. The singular type
of hyperplane contains all vertices of the collinearity graph at distance ≤ 2 from
a selected vertex. Taking all sums H4 ⊕ H4 over the distinct hyperplanes, one
gets all hyperplanes of type H2b (42 copies) and H3 (84 copies). Then, all sums
H2b ⊕ H4 lead to the 24 hyperplanes of type H1 and the 56 ones of type H2a;
further sums of type H1 ⊕H2 create the collection of 28 hyperplanes of type H5.

� The Veldkamp space of GH(2, 1) is isomorphic to PG(7, 2).
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The (3 × 3 × 3) grid (the smallest slim dense near hexagon) and its hyperplanes

� Type 1 (singular) hyperplane of the (3× 3× 3) grid. The Veldkamp space is
isomorphic to PG(7, 2).

Class Pts Lns n0 n1 n2 n3 Cps

1 19 15 0 0 12 7 27
2 15 9 0 6 6 3 54
3 13 6 1 6 6 0 108
4 11 3 4 6 0 1 54
5 9 0 9 0 0 0 12
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The smallest thin generalized octagon GO(2, 1) and its hyperplanes: 1

� The generalized octagon GO(2, 1). The vertices of the two big triangles at the
center of the picture form lines (8, 14, 16 and (14, 21, 42). They share the point
14 (the big bullet) and the latter does not lie on either straight line around it.
For example, one has the lines (6, 34, 27), (27, 35, 8) and (8, 40, 23).
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The smallest thin generalized octagon GO(2, 1) and its hyperplanes: 2 *** the Veldkamp space is PG(15, 2)

Class Pts Lns Cps FJ Type

I 15 0 288 X 1(15;15,0,0)
II 17 2 2880 X 2(17;11,6,0)

17 2 1080 X 3(17;12,4,1)
III 19 4 1440 X 4(19;7,12,0)

19 4 4320 X 5(19;9,8,2)
19 4 4320 X 6(19;8,10,1)
19 4 1440 X 7(19;10,6,3)

IV 21 6 2160 X 8(21;5,14,2)
21 6 360 X 9(21;4,16,1)
21 6 2340 X 10(21;8,8,5)
21 6 4320 X 11(21:7,10,4)
21 6 6360 X 12(21;6,12,3)

V 23 8 3960 X 13(23;6,10,7)
23 8 5040 X 14(23;5,12,6)
23 8 2880 X 15(23;3,16,4)
23 8 2880 X 16(23:4,14,5)

VI 25 10 36 X 17(25;0,20,5)
25 10 5040 X 18(25;4,12,9)
25 10 720 X 19(25;1,18,6)
25 10 1584 X 20(25;5,10,10)
25 10 1440 X 21(25;3,14,8)
25 10 1440 X 22(25;2,16,7)

VII 27 12 360 X 23(27;4,10,13)
27 12 2880 X 24(27;2,14,11)
27 12 1440 X 25(27;3,12,12)
27 12 240 X 26(27;0,18,9)

VIII 29 14 720 X 27(29;1,14,14)
29 14 225 X 28(29;0,16,13)
29 14 1800 X 29(29;2,12,15)

IX 31 16 720 X 30(31;1,12,18)
31 16 360 X 31(31;2,10,19)

X 33 18 300 X 32(33;0,12,21)
XI 35 20 72 X 33(35;0,10,25)
XII ( )
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P. Lévay, M. Saniga and P. Vrna, Three-qubit operators and GH(2, 2)3

3Three-Qubit Operators, the Split Cayley Hexagon of Order Two and Black
Holes, Phys.Rev. D78: 124022, 2008.
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Hyperplanes of the generalized hexagon GH(2, 2) and its dual: 1
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� The generalized hexagon GH(2, 2) (left) and its dual (right). For both hexagons
the Veldkamp space is PG(13, 2).

Michel Planat Multi-qudits in Veldkamp space



Hyperplanes of the generalized hexagon GH(2, 2) and its dual: 2

Class Pts Lns DPts Cps StGr FJ Type

I 21 0 0 36 PGL(2, 7) V2(21;21,0,0,0)
II 23 3 1 126 (4 × 4) : S3 V7(23;16,6,0,1)
III 25 6 0 504 S4 V11(25;10,12,3,0)

IV 27 9 0 28 X+
27 : QD16 V1(27;0,27,0,0)

27 8+1 0 756 D16 V13(27;8,11,8,0)
27 9 3+1 252 2 × S4 V8(27;8,15,0,4)
27 6+3 0 1008 D12 V17(27;6,15,6,0)

V 29 12 0 1008 D12 V18(29;5,12,12,0)
29 12 2c 1512 D8 V23(29;4,16,7,2)
29 12 2nc 1008 D12 V19(29;6,12,9,2)
29 12 4 504 S4 V12(29;7,12,6,4)

VI 31 15 6+1 63 (4 × 4) : D12 V6(31;0,24,0,7)
31 15 2+1 1512 D8 V24(31;4,12,12,3)
31 15 3 2016 S3 V25(31;4,12,12,3)

VII 33 18 3+1 1008 D12 V20(33;2,12,15,4)
33 18 2+2 756 D16 V14(33;4,8,17,4)

VIII 35 21 14 36 PGL(2, 7) V3(35;0,21,0,14)
35 21 4+2 756 D16 V16(35;0,13,16,6)
35 21 6 1008 D12 V21(35;2,9,18,6)

IX 37 24 8 756 D16 V15(37;1,8,20,8)
37 24 6+3+1 1008 D12 V22(37;0,12,15,10)

X 39 27 8+4+1 378 8 : 2 : 2 V10(39;0,10,16,13)
XI 43 33 12+3+1 252 2 × S4 V9(43;0,3,24,16)

XII 45 36 18 56 X+
27 : D8 V5(45;0,0,27,18)

XIII 49 42 28 36 PGL(2, 7) V4(49;0,0,21,28)

� Classes of geometric hyperplanes of the split Cayley hexagon GH(2, 2).
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Hyperplanes of the generalized hexagon GH(2, 2) and its dual: 3

Class Pts Lns DPts Cps StGr FJ Type

I 23 3 1 252 Q8 : S3 W3(23;16,6,0,1)
II 27 9 1 2016 S3 W10(27;8,12,6,1)

27 9 0 2016 S3 W12(27;6,15,6,0)

III 31 15 1+6 63 X+
32 : S3 W1(31;0,24,0,7)

31 15 3(1+2) 378 (2× 4) · 22 W6(31;0,20,8,3)
31 15 1+2+3 1008 D12 W8(31;4,15,6,6)
31 15 2 3024 22 W13(31;4,11,14,2)
31 15 1+2 3024 22 W14(31;4,12,12,3)

IV 35 21 7 864 D14 W7(35;0,14,14,7)
35 21 1+2+3 2016 S3 W11(35;2,9,18,6)

V 39 27 3+6 252 2× S4 W4(39;0,6,24,9)
39 27 3+9 336 S3 × S3 W5(39;0,9,18,12)
39 27 3+3+6 1008 D12 W9(39;0,9,18,12)

VI 47 39 1+6+16 126 (4 ◦ Q8) : S3 W2(47;0,0,24,23)

� Classes of geometric hyperplanes of the dual of split Cayley hexagon GH(2, 2).
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Structure of the Veldkamp space of various geometries with three points on a line

Geometry Pts Lns bits Cls Remark

5-cell 5 10 1 1
octahedron 6 8 2 1
Fano plane 7 7 3 1 smallest projective plane PG(2, 2)
Pappus 9 9 2 1
GQ(2,1) 9 6 4 2 alias the (3× 3)- grid
K(3, 3, 3) 9 27 6 3
Desargues 10 10 4 2
GQ(2,2) 15 15 5 3 alias Cremona-Richmund
GH(2,1) 21 14 8 6 thin generalized hexagon
GQ(2,4) 27 45 6 2
Pappus 3-fold cov. 27 27 8 9
S1,1,1 27 27 8 5 alias the (3× 3× 3)-grid
L3 × GQ(2, 2) 45 45 10 8 near hexagon

G̃Q(2, 2) 45 45 11 15
GO(2,1) 45 30 16 34 thin generalized octagon
GH(2,2) 63 63 14 25 a ‘split Cayley hexagon’
GH(2,2) dual 63 63 14 14 (Frohard, 1994)
S1,1,1,1 81 108 16 29 alias the (3 × 3× 3× 3)-grid
NO(2,4) 315 525 28 470 Cohen-Tits near oct. (Bisnoi, 2015)
NH(2,14;2) 759 3795 23 26 M24 near hexagon (Brouwer,2000)
GH(2,8) 819 2457 28 ? 3D4(2) hexagon (Frohard, 1992)
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The Veldkamp space of (real) multiqubits 4

general form Points Copies Remark

Cx where x ∈ Vn \ {0} (1/2)4n − 1 4n − 1 perp-set
Hx where Q0(x) = 0 (1/2)(4n + 2n)− 1 (1/2)(4n + 2n)
Hx where Q0(x) = 1 (1/2)(4n − 2n)− 1 (1/2)(4n − 2n)

� The three types of hyperplanes for (real) n-qubits. Q0(x) is the
bilinear form defined over the symplectic polar space. The
Veldkamp space is PG(2n, 2).

general form Points Copies Remark

Cx where x ∈ Vn \ {0} 31 63 perp-set
Hx where Q0(x) = 0 35 36
Hx where Q0(x) = 1 27 28 GQ(2, 4)

� The three types of hyperplanes for (real) 3-qubits.

4The Veldkamp space of multiple qubits, P. Vrana and P. Lévay, J. Phys. A: Math.
Theor. 43 125303 (2010).
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Geometries from of unitary groups

� unitary groups
U3(3) U3(4) U3(5) U3(7) · · ·
U4(2) = Sp(4, 3) U4(3) U4(4) U4(5)
U5(2) · · ·
U6(2) = Fi21 · · ·

� geometries
GH(2, 2) [2086, 4163]

5 Hoffmann − Singleton [210721 , 147493] · · ·
[two QT , GQ(3, 3)] GQ(3, 32),NH(2, 14; (2, 4))6 GQ(4, 42) GQ(5, 52)
GQ(4, 8) · · ·
NH(2, 20; 4)7 · · ·

5The U3(4) configuration consists of the 208 non-isotropic points of the projective
space P(U) (where U is the 3-dim unitary space over F16) and the corresponding 416
orthogonal bases [Brouwer et al, J. Comb. Theor. A 116, 1056 (2009)].

6The U4(3) near hexagon has 567 points, 2835 lines/triangles and the Veldkamp
space PG(20,2).

7This the biggest near hexagon (lines of length 3) with 891 points, 6237
lines/triangles and of Veldkamp space PG(21, 2) (Brouwer et al, 1994).
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The Veldkamp space of the U3(4) configuration [2086 , 4163 ]

class Pts Lns Cps Type

I 80 32 195 [ 80; 0, 64, 16, 0, 0, 0, 0]
II 88 56 208 [ 88; 0, 12, 75, 0, 0, 0, 1]
III1 96 80 16640 [ 96; 3, 15, 30, 30, 15, 3, 0]
III2 96 80 2496 [ 96; 10, 5, 25, 50, 0, 1, 5]
IV1 104 104 6240 [104; 5, 4, 20, 40, 31, 0, 4]
IV2 104 104 24000 [104; 0, 13, 26, 26, 26, 13, 0]
V1 112 128 8320 [112; 0, 3, 15, 46, 30, 15, 3]
V2 112 128 3900 [112; 0, 0, 28, 32, 32, 16, 4]
VI 120 152 3120 [ 120; 0, 0, 11, 40, 40, 20, 9]
VII 136 200 416 [ 136; 1, 0, 0, 0, 75, 60]

� The 10 types of hyperplanes of the U3(4) configuration: the Veldkamp
space is PG(15, 2) as for GH(2, 2). All hyperplanes follow from Veldkamp
sums starting with the type II hyperplane: the latter is defined from
points of the graph that are either at minimum or maximal distance.
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